Managing innovation capability in SMEs

The Fraunhofer three-stage approach

Hans-Jörg Bullinger, Marc Bannert and Sabine Brunswicker

SMEs need to innovate in order to survive and create competitive advantages. Competitive success is dependent upon an organization’s management of its innovation competencies. This article presents the three-stage Fraunhofer approach to assess, enhance and manage the company’s innovation capability in a targeted and sustainable manner. It is based on an intensive review of existing literature and empirical research and builds upon good practices in innovation management in SMEs. This approach enables an SME to continuously control and improve innovation capability, independent of external experts.

Introduction

The need for small- and medium-sized enterprises (SMEs) to innovate originates from various factors. First, globalization exposes SMEs to new competitors from distant parts of the world, resulting in an acceleration of the already rapid increase in competition. Secondly, niche markets that were traditionally served by SMEs are more intensively targeted by large enterprises as there is a tendency to make production processes more flexible in order to adapt them quickly to new market niches. A third factor is the rapid technological progress that has changed the nature of competition and makes existing products obsolete. Finally, more demanding customers are now looking for products and services of high quality, enhanced performance and enhanced user experience - a fourth factor that comes into play.1 2

In order to sustain this increased competitive pressure, SMEs are forced to rethink their existing competitive strategies. Indeed, innovation is considered as being the most valuable sources of growth and competitiveness. Traditional management practices, such as quality management or cost reduction measures, are not sufficient to sustain competitive performance.3 A company’s capability to continuously generate innovation is now the key prerequisite to position itself successfully in the market and to gain a unique and superior competitive posture.2

Prof. Hans-Jörg Bullinger
President
Fraunhofer Gesellschaft
Hansastrasse 27C
80686 München, Germany
Tel: (+49-89) 1205 1000
Fax: (+49-89) 1205 7500

Marc Bannert
MT Innovative Technologies
Tel: (+49-711) 970 2245
Fax: (+49-711) 970 2287
E-mail: marc.bannert@iao.fraunhofer.de

Sabine Brunswicker
Research Associate
Competence Center Innovation Management
Tel: (+49-711) 970 2035
Fax: (+49-711) 970 2299
E-mail: sabine.brunswicker@iao.fraunhofer.de

Fraunhofer Institute for Industrial Engineering (IAO)
Nobelstrasse 12 C, D-70569 Stuttgart, Germany
The notions that innovation is related to R&D only, that it usually happens by accident and that it is “unmanageable” is widespread among SMEs. However, studies have shown that innovation is not only based on excellence in R&D but also dependent on an enabling environment in a firm’s entire innovation system. It is the result of a goal-oriented and systematic allocation of resources and outcome of well-planned tasks, activities and processes. Only those companies that systematically manage the innovation process and that establish the organizational and structural setting required for generating a continuous flow of innovation will achieve sustainable performance. For each area selected we present the critical success factors. Thereafter, we introduce the three-stage Fraunhofer approach to improving the innovation capability of SMEs; and then describe each phase in detail. We conclude with summarizing the benefits of the three-stage Fraunhofer approach in effectively improving an SME’s innovation management on a sustainable basis.

Evaluating innovation capability - an overview

Innovation capability is defined as the holistic, corporate-wide potential of a company to generate new and unique values. It relates to a variety of areas and is influenced by different factors inside and outside the organization. It is a complex construct that is difficult to be captured and measured. However, it is possible to establish a structure for this complexity and thus to make it manageable. This has been concluded in a range of studies in the area of value management and company evaluation. These studies did not necessarily focus on innovation only but addressed research questions linked to value management and innovation. Related approaches are either very general - such as the Balance Scorecard - or focus on a very specific issue, such as a company’s financial value, its processes of quality management (such as the EFQM or ISO 9000) or its innovation capability.

Within the last group a range of different models have been developed over the last decades with the aim of improving a company’s innovation capability. Both from a scientific and practical perspective, the corpus of existing approaches and measurement techniques is highly fragmented and often conflicting, with consensus evident only at an abstract level. That is, they differ with regard to their scope, their underlying conceptual models, and the measurement approaches. Methods and tools available range from internet-based self-assessment tools, to scorecard methods applied in a workshop setting, to comprehensive audits applied by external experts. The objectives and foci differ among this group of different methods and tools. Indeed, a range of models and assessment techniques have been primarily developed in the context of technology. Others focus on the analysis of processes or investigate performance-oriented output measures.

When investing strengths and weaknesses of existing approaches and collecting the requirements for a successful assessment and management of company activities, four key criteria for analysing and improving the innovation capability of a company appear (Figure 1):

- **A process audit** investigates enabing factors and processes of the corporate system. It investigates the actual weaknesses within the innovation system and addresses the individual performance and quality of installed processes and structures for innovation in comparison to best practices. Process audits are usually applied on a “live” or real-time basis manner and are conducted by external experts.

- **A performance audit** focuses on the output of individual innovation processes and dimension within the innovation system. It demonstrates the success of, and the value generated from, today’s innovation activities. To measure performance, indicators such as time-to-profit and time-to-market are usually applied and compared with the
performance of selected competitors or with the average of the whole industry. Again, a performance audit is usually conducted by external experts.

- In **process controlling** the performance of processes and structures related to innovation are continuously evaluated, monitored and controlled. Usually, qualitative indicators are applied to identify deviations between planned and as-is data; such as, for example, the degree of customer integration and the efficiency of market analysis. Consequently, it provides insight into changes in innovation management performance over time.

- **Performance controlling** is usually applied in conjunction with process controlling. It focuses on quantitative indicators to measure innovation output (and input). It is specifically applicable to compare different units or companies.

The Fraunhofer approach
In response to the various difficulties and challenges faced, Fraunhofer has developed a three-stage approach to improve innovation capability, addressing all four types of evaluation described above (Figure 2).

In the first phase, the innovation audit is conducted by external auditors. It takes into account enablers (Process audit) and results/outputs (Performance audit) and evaluates them with regard to strengths and weaknesses. The aim is to identify the current status of innovation management performance and to identify priority areas that will provide the base for future measures to improve innovation capability.

In the second phase, customized concepts for selected measures are developed and a road map, with detailed action plans, is laid down. The scope and the structure of the design phase is customized to the needs of the individual company and, depending on the results of the innovation audit, implementation takes place sequentially or in parallel.

In the final phase, the Fraunhofer innovation card - a customized scorecard for managing innovation - is implemented, enabling the company to continuously control enablers of the innovation system (Process control) and results/output (Performance control). The innovation card builds upon the results of previous phases and provides the company with a measurement system comprising customized qualitative and quantitative success factors. A successful implementation in the organizational structures and processes enables the company to fully embed activities aimed at improving innovation capability at strategic and operational levels.

Concept
The conceptual backbone of the three-staged Fraunhofer approach is the Fraunhofer innovation management model, which is based on nine key areas addressing mainly enabling aspects and area-specific outputs. In order to successfully link innovation to value growth, an additional area focuses on business impact and overall innovation management success. Consequently, the Fraunhofer innovation management model focuses on both enablers and results/outputs of the corporate-wide innovation system (Figure 3).

The innovation management model was developed in a two-year research project of the Fraunhofer Society between 2004 and 2006 after a comprehensive literature review of existing approaches. It also drew upon primary data collected during a telephone survey based on a structured questionnaire with 152 SMEs of the mechanical and electrical engineering sector. To complement this data, 14 one-day workshops (focus group sessions) with selected, highly innovative com-

Figure 2: The three-staged Fraunhofer approach to improve innovation capability

<table>
<thead>
<tr>
<th>Phase 1: Innovation audit</th>
<th>Phase 2: Design phase</th>
<th>Phase 3: Innovation card and implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• What is the current status of our innovation management?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• What are the key areas for improvement?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• What needs to be done to innovate better, faster and more successfully?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• What can we learn from others?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Detailed analysis of all levers of innovation management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Identification of focus areas for improvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Concept to design measures for selected modules/focus areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Development of detailed measures, action plans and roadmaps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Development of a customized innovation scorecard (Innovation card)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Implementation of designed modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Implementation of Innovation Card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Continuous measurement of improvement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Innovation Strategy

- **Knowledge & Competency**
 - Technology
 - Networks
 - Business Impact
- **Methods & Tools**
 - Innovation Networks
 - Business Impact
- **Services**
 - Knowledge & Competency
 - Methods & Tools

Innovation Culture

- **Innovation Proficiency**
 - Knowledge & Competency
 - Methods & Tools
 - Services
- **Innovation Impact**
 - Knowledge & Competency
 - Methods & Tools
 - Services
companies of the same industry were conducted to identify additional success factors and measures and to better understand the underlying processes and structures. Critical success factors and key indicators identified were analyzed with regard to their relevance, consolidated and sorted into categories. As a result the 10 key areas presented above were identified and formed the base of a synthesized framework for evaluation and control of innovation management activities. An excerpt of the results and their implication to the Fraunhofer Approach is presented in Table 1.

Each area is briefly described.

Innovation strategy
An innovation strategy is based on a company’s vision of its overall aim as an innovative player in its markets. The innovation strategy has to be derived from the overall vision in a systematic way. Innovation strategy focuses on the time sequence of decisions on capabilities and competencies to be built up, on markets to be exploited or entered, on new products/services to be developed and on processes and structures to develop them. To successfully implement these decisions, an innovation strategy should comprise clear innovation targets, “innovation search areas” to focus innovation activities, innovation roadmaps and a specific innovation budget. Activities taking place within the innovation strategy development process must be consistent with an overarching, organizational strategy that requires management to take conscious decisions regarding innovation goals. Consequently, innovation strategy has a long-term focus and needs to be clearly linked with the overall business strategy.

Technology
For many companies the development and application of technologies is the prerequisite for new products and production processes. Taking this into account, technology addresses the planning, management and controlling of it. In this context the capability to identify new technologies, to assess their value and to successfully exploit them is evaluated. Success factors that are analyzed in the context of this area are, for example, the understanding of relevant technological developments or the ability to secure access to key technologies.

Competencies and knowledge
Knowledge, competencies and skills available within a company are fundamental to innovation, as they provide the base for new ideas and their successful development. Therefore, their goal-oriented development and application are highly important to improve the innovation capability. Processes and activities that impact innovation capability are the generation of new knowledge, the development of existing capabilities, the integration of knowledge (externally and internally), the access to knowledge from unrelated disciplines or industries (“crossing horizons”) and the quality of technical, methodological expertise and soft skills.

Products and services
Products and services are the outcome of the innovation process in the innovation system. The value generated in the market represents the success of the innovation management activities. Companies that successfully manage innovation succeed in developing products/services that are superior to those of competitors. The success of a product depends mostly on the value created for the customer with regard to functionality, quality, price and related factors (user experience, etc.); in short, the needs met and the problems solved. In addition, aspects such as continuous improvement of existing products, the systematic and goal-oriented lengthening of the product/service life cycle, and the intelligent combination of products, services and additional factors are the foci of products and services.

Innovation processes
For SMEs it is most critical to keep the time-to-profit (the period between first idea and break-even) as short as possible. Having an efficient process that enables the company to manage the ambiguity of the innovation is universally agreed to be critical to innovation. Indeed, networked innovation processes are the prerequisite for a successful realization of innovation projects. An integrated innovation process comprises the following distinctive phases: idea generation and assessment, product, process and service development, and the commercialization of products/services.

Structure and networks
This part focuses on the company’s organizational structure, which provides the basis for a successful implementation of an innovation strategy. The organizational structure of an innovation-oriented company differs from that of other companies in aspects such as decision-making processes and formalization. In a dynamic context, SMEs face the challenge to find the right balance between control on the one hand and flexibility and adaptability on the other. There are tasks that need to be clearly managed and controlled. For example, employees require clearly defined areas of activity, and access to budgets needs to be planned. However, the structure should be flexible enough to react to changes in the environment. To an SME inno-
innovation networks and partnerships are as important as the internal organizational structure. For example, a goal-oriented cooperation with partners to leverage off their own innovation capability is extremely important.4, 8 For example, a goal-oriented cooperation with partners to leverage off their own innovation capability is extremely important.12, 13, 32

Market
Demand and supply meet on the market - the world of customers, competitors and suppliers. In order to be successful, companies need to analyze customer needs and changes in customer behaviour. Finally, it is the customer that is the most important source for new ideas. In addition, it is crucial to take into account the competitors’ actions, identifying, for example, which ideas are followed by competitors and which competitors are relevant as networked partners.8

Innovation culture
This area addresses aspects such as communication and cooperation behaviour, leadership and motivational behaviour (Sourisseaux, 1994).33 An innovation culture is an important element of the overall innovation system. It is the total sum of values, norms, assumptions, beliefs and ways of living built up by a group of people and transmitted from one generation to another.34

For example, the innovation culture is represented in the way people handle failure, the motivation from a leadership supporting innovation, the willingness to exchange knowledge and the targeted promotion of innovators within the company.

Methods and tools
The focus here is on tools supporting innovation management that were not explicitly covered in other areas. They reach from IT and knowledge management tools to performance measurement and information technology tools, including assessment tools and benchmarking.4, 35 IT and knowledge management ensure that an SME and its employees have access to knowledge that it has already created. Even in small companies, often the knowledge resides in the heads, computers or drawers, where it cannot be shared in a systematic manner.

Business impact
Innovation has to create value on the market. Ultimately, for innovation management to be beneficial to the company, it has to lead to increased competitiveness. Therefore, this area links the overall business performance to innovation activities. It evaluates the overall output of innovation management activities reflected in indicators related to its business impact.

The following sections describe each phase of the three-stage Fraunhofer approach to improve innovation capability.

Innovation audit
The innovation audit comprises four distinctive steps, which are usually completed within 4 to 6 weeks.

Table 1: Areas and key success factors to assess innovation capability

<table>
<thead>
<tr>
<th>Areas/Key factors</th>
<th>Implication for Fraunhofer approach</th>
<th>Reference Nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Innovation strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Vision for innovation</td>
<td>• Existence of a vision clearly linked to innovation</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>• Vision is fully communicated to all employees</td>
<td>37</td>
</tr>
<tr>
<td>• Roadmap in place</td>
<td>• Systematic planning of innovation portfolio</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>• Roadmap is aligned with technology and market developments</td>
<td>19</td>
</tr>
<tr>
<td>• Innovation goals clearly defined and communicated</td>
<td>• Setting for clear fields of innovation, goals and funding</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>• Innovation strategy plan is based on a systematic process</td>
<td>8</td>
</tr>
<tr>
<td>2. Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Definition of technology strategy</td>
<td>• Defining technology objectives and fields</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>• Relating technology to business objectives</td>
<td>42</td>
</tr>
<tr>
<td>• Continuous technology forecasting</td>
<td>• Systematically identifying, monitoring and evaluating technology trends</td>
<td>21</td>
</tr>
<tr>
<td>• Evaluation and sourcing of technology</td>
<td>• Clear procedure to assess technology potentials</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>• Using different sources of technology</td>
<td>22</td>
</tr>
<tr>
<td>3. Competence and knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Understanding own strengths and weaknesses</td>
<td>• Building the required core competences</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>• Assessing the competitors’ capabilities</td>
<td>44</td>
</tr>
<tr>
<td>• Capability to enhance the knowledge base</td>
<td>• Ability to identify, acquire and utilize knowledge</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>• Aligning knowledge acquisition with strategy</td>
<td>47</td>
</tr>
<tr>
<td>• Systematic knowledge management</td>
<td>• Cross-linking of departments</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>• Integrating external knowledge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Continuous knowledge transfer</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>• Superiority of products/services</td>
<td>• Continuous improvement of existing products/services</td>
<td>• Systematic idea management</td>
</tr>
<tr>
<td>• Superior functionality</td>
<td>• Strong customer-orientation</td>
<td>• Systematic idea generation</td>
</tr>
<tr>
<td>• Low costs</td>
<td></td>
<td>• Exploitation of different sources of ideas</td>
</tr>
<tr>
<td>• Relatively high quality</td>
<td></td>
<td>• Systematic development process in place (stage-gate process with clearly defined responsibilities)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>51</td>
<td>30</td>
</tr>
<tr>
<td>49</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the first step the company and the auditor jointly define the objectives of the analysis. Both the scope and the duration of the audit are defined in accordance with the objectives and the organizational characteristics. In parallel, both parties decide upon the participants and agree upon the timing of the audit process. Here, it is important to address all hierarchy levels, functions and divisions within the innovation system of the company in order to integrate different perspectives within the innovation system.

In addition, performance indicators (such as financial data on sales and profit and investment in R&D) and additional information related to innovation management are collected.

In the second step, interviews with selected interviewees are conducted, based on a structured guideline. It builds upon the 10 areas described in Table 1. Both strengths and weaknesses are identified. If required, the interviews are complemented with moderated workshops or specific data and “system analysis”, such as an analysis of the implemented idea management. The interview guideline is semi-structured and, for each area, specific audit criteria are assigned that are investigated with one open “key question”. For each key question there are more detailed additional questions to enhance the value of the analysis with regard to the objectives and the content of the assessment. To validate the answers, additional “validating questions” are asked.

In the third step, data are evaluated and key findings are analyzed based on the Innovation Audit Scorecard and the Fraunhofer benchmarks of good practices in innovation management. The Innovation Audit Scorecard is an effective means to measure gaps between current practice and targeted “good” practices and performances. For each auditation criterion there is a scorecard with two main functions: On the one hand, it helps to assign a value to the answers on a range from 1 to 4, to identify good practice criteria and priority areas for improvement. On the other hand, the Innovation Audit Scorecard provides a base for defining high-level actions, as there is a list of valuable actions and measures assigned to each criterion. An excerpt of the Innovation Audit Scorecard is presented in Appendix 2. On the basis of the analysis of the identified areas for improvement, customized concepts can be developed (see Design phase below). In this phase the expertise of the auditor, good practice benchmarks and the characteristics of the company play an important role. The most important results are the identification of key areas for improvement.

In the fourth step the Innovation Audit is completed with presenting the results to the client. On the basis of the Innovation Audit Scorecard, results are visualized and presented in a consolidated form. In addition, key strengths and important areas for improvement are presented and first recommendations and high-level measures are provided. If required, recommendations for improvement are evaluated and prioritized. The final result is a first high-level roadmap which serves as a base for the second design phase, which is explained in the next section.

Implementation of innovation card

The implementation of the detailed design concepts and a customized innovation card evolves from the results of the design phase. The implementation usually takes place in four steps in a pilot phase to adapt it to the company’s specific settings in an iterative and continuous way.

In the first step a measurement plan and an organizational concept are defined. If not already completed in the design phase, for each area of the Fraunhofer innovation management model, indicators are defined and target values specified. Also defined are how and in what time frame these values will be collected. For each indicator a specific measurement procedure is defined. The plan contains information about the sources of the data to be collected, the measurement procedure (interviews, retrieval from a database) to be applied and the frequency of measurement. If no measurement procedure is in place, a specific process is developed. To successfully implement the measurement procedure, existing organizational structures are effectively used. It is important to clearly define responsibilities for required actions.

In the second step the Innovation Card is tested “in real life” in order to identify the strengths and weaknesses of the controlling tool. If required, adaptations have to be made.

In the third step, the data collected is analyzed and interpreted and the first conclusions drawn. This is an important step, as valuable insights can be gen-
erated from thorough analysis and evaluation. From the conclusions derived, decisions on future planning and measures to be taken are made. This is done by defining clear measures and their implementation. At this stage it is useful to predefine which “performance stage” should be achieved within the next time-frame to make objectives and expected results more transparent.

In the fourth step feedback on the innovation card is collected in order to continuously improve the approach. Iterative feedback enables the company to sequentially introduce a continuous process that meets the requirements of innovation projects of the company. Collecting feedback on satisfaction with the results of the measurement procedure helps to address the company context and to continuously improve the innovation card.

Benefits of the approach
The Fraunhofer approach represents a systemic methodology to manage and control innovation capability. It has been tested in various settings and successfully implemented in the field. It has been used in a practical context, where it has passed tests of both usefulness and usability. The benefits of the approach are as follows:

- Effective and structured analysis of current innovation capability as the underlying model embraces all relevant areas of innovation management. The Innovation Audit Scorecard supports a rapid assessment of innovation capability with respect to known good practices. The Innovation Card, building as it does upon the results of the Innovation Audit, enables the company to analyze its innovation capability in an efficient way without the support of an external auditor.

- Guided approach providing an effective means to improve and implement innovation management in a systematic way. As a result companies can rely on increased professionalism of their innovation activities and will manage to better exploit their innovation potentials. Continuously managing and improving their innovation capability ensures value creation and value growth.

- Focus on highest potential. As the evaluation focuses on the identification of key strengths and areas for improvement, it helps the company to concentrate first on the priority areas with the highest potential for improvement and to implement measures to work on these key issues. Activities usually focus on a specific area but take into account interrelationships between different areas.

- Scalability. The three-stage approach is scalable and adaptable to the needs of the company.

- Development of targeted measures to improve innovation capability. Examples are the improvement of procurement processes and production logistics, increased development of capabilities and training of staff, cultural change initiatives or improved external cooperation with suppliers and customers.

There is a range of factors that affect the success of this method. One important factor is openness and a willingness to communicate with all participants of the project. Only if participants are aware of the relevance of innovation management and are highly motivated to conduct an innovation audit and to implement an innovation card, will the project provide valuable results both in the short-term and the long-term. The quality of the results will also depend on the selection of the right business unit and interview partners. It is necessary to ensure the selection of at least one representative business unit that reflects the company and its business activity and of interview partners from different hierarchy levels and organizational functions.

Conclusion
Within SMEs, innovation processes are often neither efficient nor systematic and therefore hinder a successful and rapid transformation of innovative ideas into products and services that prove their value on the market. Fraunhofer has developed a three-stage approach to improve the innovation capability of SMEs, resulting in increased competitiveness and value growth.

The holistic model embraces all relevant areas and factors of innovation management. The innovation audit provides a means to assess the innovation capability of the company. Based on the definition of the current innovation management, performance priority areas are identified, and first high-level recommendations are provided to be detailed in the second phase - the design phase.

The innovation card complements the innovation audit and enables the company to successfully install their own innovation management control. This can be applied continuously without the support of an external expert to measure and control innovation management performance.

As a result, the three-stage Fraunhofer approach enables SMEs to continuously improve their innovation capability in an effective and efficient way, increasing competitive performance with sustainable impact.

References

44. Savioz, P. (2004). Technology intel-
Appendix 1: Excerpt - Audit questionnaire

Criteria: Idea assessment

Main question
How and by which means are innovative ideas assessed (product/process/service)? How are first concepts and the requirements catalogue developed? What kind of information is included in the product concept paper? How systematically are projects assessed and selected?

Detailed questions
- Are critical customer requirements/product functionalities and economic and technical data addressed in the first (product) concept (in the sense of a requirements catalogue)? Are both technical feasibility and economic issues taken into account? Are releases dependent on the completeness of the requirements catalogue?
- Are innovative ideas assessed based on predefined criteria in a systematic way?
- Is there a formal idea assessment and project prioritisation process in place?
- What methods are applied? Are partners and customers integrated when assessing and selecting ideas?
- Is each innovative idea assessed based on the same criteria? Are there different criteria in place for assessing incremental versus radical ideas?
- Are different alternatives selected based on a comparison of risk and market value (potential)?
- Is the prioritisation guided by the overall strategic goals (short-term liquidity and long-term business development) with the aim to achieve a balanced project portfolio?

Control questions
- Is each idea based on the processes in place, and implemented?
- How is the value and quality of the implemented process perceived and evaluated within the company?
- Are processes often reviewed and adapted? When did the last review take place?
- How is the assessment of ideas usually conducted?
Appendix 2: Excerpt - Scorecard

Criteria: Idea assessment: How are ideas assessed?

| Customer needs are roughly known. Ideas are assessed and selected unsystematically, IT-support is not used (idea databank, storage system, assessment tools, etc.) | Customer needs are roughly sized in terms of a product concept catalogue. Ideas are assessed and selected by means of varying tools and criteria. IT-support is randomly used. | Customer needs are sized in terms of a product concept catalogue. Technical and economical issues are checked and ideas are assessed and selected by means of fixed tools and criteria. Risk and chances of innovation projects are evaluated separately. IT-support is regularly used. | Customer needs are sized in terms of a product concept catalogue. Technical and economical issues are checked and ideas are rated and selected systematically by means of fixed tools and criteria. Projects are evaluated against each other and categorized in terms of risk and chance. Additionally projects are prioritized on the basis of their degree matching cooperative strategy (e.g. long term, short term objectives). IT-support is used intensively. |

Methods/toolkit

- Qualitative tools = checklist technique, dual rating technique, scoring technique, portfolio technique, lead user method, expert panels
- Quantitative tools = internal revenue, break even analysis, Net present Value (NPV), Return on investments (ROI), etc.
- Software solutions for idea assessment

Recommendation catalogue

- Develop a product assessment catalogue by integrating customers and suppliers
- Develop a product assessment catalogue by an interdisciplinary team of members of R&D, marketing, sales, construction and production
- Apply tools to develop a systematic rating tool for innovation projects (project portfolio)
- Install an idea storage and assessment system

Appendix 3: Result presentation - Example

![Diagram showing methods and tools, competencies and knowledge, innovation strategy, innovation culture, innovation process, structure and networks, technology, products and services, markets.]